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A cascade of stirred adsorbers with a cyclic mode of operation under which adsorbers are periodi­
cally removed for activation and replaced by reactivated ones is considered. A method of compu­
tation of temperatures maximizing the period under the requirement that the outlet concentration 
is below a given level is presented . 

In the preceding paper l
, we have studied the problem of designing the temperature control in 

a stirred adsorber in such a way that the time for which the outlet adsorbate concentration does 
110t exceed a given level is maximal. In case the adsorption process should not be interrupted, 
a cascade is frequently employed rather than a simple adsorber. Periodically the first adsorber 
of the cascade is removed for activation and simultaneously a reactivated one is added to the cas­
cade as its last member (Fig. J). The advantages of this mode of operation of the process (also 
called "merry-go-round") were discussed in2

. 

Naturally, for a given cascade, one would like to choose the operation parameters in such a way 
as to have this period as long as possible. An optimization problem for a cascade of tubular reac­
tors under the same mode of operation with a different optimality criterion has been solved in3

. 

As in l we shall deal' with temperature as a control variable. However unlike inl, we keep the tem­
perature constant in each particular adsorber during one period. This gives rise to a finite dimen­
sional maximization problem with the temperatures in the particular adsorbers as variables and 
ength of the period as the function to be maximized. 
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FIG. 1 

Cascade with periodic activation 
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In this paper, we solve this problem by the gradient method. The main difficulty 
lies in the computation of the periodic steady state and its derivatives with respect 
to the temperatures. For the former one has to solve a coupled system of partial and 
ordinary differential equations, for the latter a coupled system of their adjoints. 

THEORETICAL 

Problem Formulation 

As cascade members we consider continuous stirred adsorbers with the sorbent 
in the form of spherical particles of approximately equal diameter with the following 
properties: a) The concentration of the adsorbate in the gaseous phase at a given time 
is constant over the adsorber and equal to that in the outfiowing stream (a con­
sequence of perfect mixing). b) The temperature in a given member of the cascade is 
constant. c) The distribution of the concentration of the "adsorbate in the particles 
at a given time is the same for every particle. d) The resistance against mass transfer 
from the gaseous phase to the sorbent particle is negligible. 

It follows from l that under the above conditions the i-th adsorber, i = 1,2, ... n, 
of the cascade can be modelled by the following system of dimensionless equations: 

(1) 

(the equation of material balance), 

(2) 

(the formula for adsorbed amount), 

(3) 

Di = D(8i); r E ( 0, r*); Q E ( 0, i) 

(the equation of diffusion in one particle), 

(4) 

(equilibrium at the particle surface - boundary condition for Eq. (3)). 
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The initial conditions for Eqs (1) and (3) follow from the way the organization of 
the cascade is changed at the switching time (the i-th adsorber becomes to be the 
(i - l)th one for i = 2, ... n, the first one is removed and a fresh one is added to the 
end) and the requirement that the process be periodic: 

C1(0,0) = cz(r*, Q) 

cz(O, O) = c3(r*, Q) 

cn- 1(0,0) = cn(r*, Q) 

cn(O, 0) = ° 
4>1(0) = 4>z(r*) OzIO! 

4>n-l(O) = 4>n(r*) OniOn-I 

4>n(O) = ° . 

(5) 

(6) 

The adequacy of this model has been tested in4 for an experimental stirred adsorber, 
which is described in 5. 

Our goal consists in finding such values of 01 , •.. On within given bounds which 
allow the maximal value of the period r* for which the outlet concentration 4>n(r) 
does not exceed the given concentration level 4>* for ° ~ r ~ r*. 

Solution of the Equations (1)-(6) 

In order to solve our optimization problem, we have first to solve the system of Eqs 
(1) - (6) modelling the periodic steady state of the cascade. This system is a coupled 
system of partial and ordinary differential equations. The coupling of the equations 
for the i-th member with those of the (i - l)th member of the cascade goes in two 
directions. While for the solution of the Eq. (1) for the i-th member. the knowledge 
of 4>i-l is needed, to solve Eqs (1), (2) for the (i - l)th member one needs the 
initial values Ci - 1(0' Q) and 4>i-l(O) which are determined according to (5), (6) by 
ci(r*, 0) and 4>i(r*). This is why the system of Eqs (1)-(6) has to be solved iteratively. 

The iterative method we have used simulates the transient behaviour of the system. 

One chooses the initial iteration of the outlet concentration of the particular ad­
sorbers 4>7(r), 4>~(r), ... 4>~ - I(r). The following iteration 4>1(r), 4>z{r) , ... 4>n(r) is 
obtained by solving the system of Eqs (2)-(6) and 

(7) 
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This iteration step is repeated until the successive two iterations match each other up 
to a prescribed degree of accuracy. In each iteration step the Eqs (2)-(7) for the 
i-th member do not depend on the solution of the equations of the member 1 to 
(i - 1), but they depend on the solution of the system of equations for the (i + 1 )th 
member through the initial conditions (5), (6). Therefore we have to solve the system 
of equations for decreasing. i starting from the equations for the n-th member. 

The solution of the system of Eqs (2) - (7) for the i-th member requires another 
iteration procedure. It is based on the series expresions 

(8) 

where 

(9) 

and 

. f>xp (15i+1 m2 7t\r - T*)) C i +1(T) dT + 

+ ~ ~ sin (m 7tQ) exp (-15 i + 1 m2 7t2T*)flQCi+l(0, Q) sin (m 7tQ) dQ (10) 
Q m=l 0 

and on the implicit Euler difference scheme for the Eq. (7). We compute succesively 
the values 4>( Tj), C(rj) , q( Tj) for a chosen sequence of points TO = 0, T 1, ... Tn = T* 
by the following iterative procedure: given 4>(-rj - 1), C(Tj- 1), q(Tj-l) choose 4>(Tj), 
compute C(Tj) from (4), then q(Tj) from (8) and check whether the implicit formula (7) 
is satisfied. If not, readjust 4>(TJ until satisfactory coincidence is achieved. 

Solution of the Optimization Problem 

Similarly as in!, in order to solve our optimization problem we introduce an auxi­
liary cost functional 

(11) 
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where 

~+ = {~ if ~ ~ ° ° if ~ < 0. 

903 

(12) 

The concentration of the a'dsorbate in the outftowing stream can be kept below ¢* 
on <0, r*) for a given r* if and only if min Y(01 ' . . . On) = ° for this r*. Thus, we 
compute min Y(Ol ' ... On) and then increase or decrease r* according to whether min 
Y(01' ... On) is zero or not, until sufficient accurancy of r* is achieved. 

In order to minimize Ywe have used the simple gradient method. For the case the 
bounds of the temperature would be reached we have modified the method as the 
projected gradient one. This, however, never happened in our computations. The 
components 8Y j80i of the gradient can be expressed by the formulas 

(13) 

8Y = fT< [4Di rr 8F 8p;(r, 1) + ¢;(r) l/1;(r) + 4rr dD fl(/ 8ci 8Pi dQ _ 
80i 0 80i 8(2 b dO i 0 8(2 8(2 

-l ¢;(r ) l/1i+1(r)] dr '+ 1/1~~) ¢i(O) - 1/1~~~:0) ¢kr*) for i < n, (14) 

where l/1i and Pi solve the adjoint system of equations 

dl/1j _ I/1jOi + 8F ~ dPJr) + Gjl/1j + 1 = {j(Oi¢i(r)) 0i 

dr b 8¢i 3 dr b ° 
p1(r*, 1) = 0, 1/11(r*) = 0; 

for 

for 

i = n , 

i < n, 

PiCa' (2) = pi+1(r* , (2) for 12 E <0,1 ) , l/1i(O) = l/1i+l(r*) 0dOi+l , 

i = 1, .. , n - 1 ; 

Pier, 1) = l/1i(r)jb, i = 1, ... n, for r E <0, r* ) ; 

I/1n+1(r) = ° for r E <0, r* ) , 
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where 

(18) 

'(B.A-.(1:)) = {O. if ¢iBi ~ ¢* 
J 1'1'1 1 if ¢iBi > ¢* . 

(19) 

The computations leading to this expression of the gradient are rather tedious. 
Their idea is the same as in the paper! (Appendix). 

The structure of the system of the adjoint equations is entirely similar to that of 
the system of model equations, provided we reverse time and the numbering of the 
equations. Therefore in order to solve the adjoint system we can adopt the same itera­
tive procedure as for the system of model equations (of course, with time and the num­
bering of equations reversed), the series expansion (8) for qi and (10) for clO, g) 
replaced by the series expansions 

PieS) = ~ l/!ls) L 2 -l/!i(O) CXj(s) - cxJs - J.) - -d}, -6 ( 00 1 IS dIHS)) 
1t (j m=1 mods 

6 00 (_l)m II - - L -- exp (-Di m2 1t2s) ePi(O, e) sin (m 1te) de, 
1t m=1 m 0 

(20) 

I 

Cj 
---- --------~ 

e 

1·2 

o 1'O~--::-----'---~----'-------'------J,J 

FI<;s.2 FIG. 3 

Piecewise linear approximation of c inside 
the particle 

Temperatures in the particular members of 
the · cascade (numbering of curves corres­
ponding to the order of approximation) 
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. exp (Di+ 1m2 n 2 (s - r*)) ~ ds + - L sin (m nil) . f
" - t/I. (s) 2 00 

o . 0 e m=1 

. exp (-15 i + 1 m2 n2r*) J: IlPi + 1(0, e) sin (m ne) de, (21) 

respectively. 
Let us note, that by this procedure we obtain the adsorbed amount qi and the cor­

responding adjoint function Pi without having to compute the entire functions Ci 

and Pi- However, the expressions (13) and (14) for the gradient of Yinvolve the deri­
vatives of these functions. Rather than compute Ci and Pi by solving the partial diffe­
rential equations (3) and (15) we approximate these functions for every fixed r by 
piecewise linear functions Gi( r, e) and Pie r, e) such that the equalities 

3 J: e2Ci(r, e) de = qi(r) , 

oclr, 1) 1 dqi(r) 
-a;- = 315

i 
dr 

and the corresponding equalities for Pier, e) and pier) are satisfied (Fig. 2). 

0'65 

0'50 

o 

FIG. 4 

Length of the interval in which the outlet 
concentration is below I/J* for thej-th approxi­
mation. The percentual increase is 26% 
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Cost functional vs approximation step 
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(23) 
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Each step of the gradient method requires a solution of the system of model Eqs 
(1) - ( 6) (to obtain the value of the minimized cost functional Y) and then the solution 
of the system of adjoint Eqs (15)-(19) to obtain the partial derivatives of Y with 
respect to the temperatures (Jl, ... (In' 

RESULTS 

We have tested our method on a cascade of five adsorbers with following parameters, 
which correspond to the system ofn-heptane and molecular sieve Calsit 5A: n = 5, 
CPo = 0·5 X 10- 4 g/cm3

, To = 393 K, Tmin = 323 K, Tmax = 473 K, VjTi = 0·36 min, 
NjV = 0·167 particlejcm3

, tf = 61·58 min, R = 0·5 cm, a*(cpo, To) = 0·0983 gjcm3
, 

D = 2·8787 X 10- 3 exp (-2994jT) cm 2 /s, M = (20'14 - 0'02772T) x 0·1151 x 
x 10- 3 exp (1966/T). P/(l + 0·1151 x 10- 3 exp (1966jT) . P), M in gj100 g, P in 

Pa. 
Dimensionless parameters: (j = 5·85 X 10- 3

, (Jmin = 0·8:C2, (Jmax = 1'204, cp* = 0·1. 
The results of our computations are represented on Figs 3 - 5. These figures illustra­

te the convergence of the gradient method for a fixed T* close to the optimal one. The 
initial temperature was chosen to be (Ji = 8max for i = 1, . .. 5. 

As we have pointed out in1, while the increase of temperature influence the ad­
sorption rate positively (15 is an increasing function of 8), it influences the equilibrium 
adsorbed amount negatively (the adsorption isotherm is a decreasing function of 8). 
This leads one to expect that temperature should be high when internal diffusion is 
decisive for the process and low when the adsorbent becomes saturated. -As seen 
from Fig. 3 the results of our computations are in accordance with this intuitive 
idea: the temperature decreases considerably when passing from adsorber 3 to 1 (note 
that the adsorbed amount increases with decreasing number of the adsorber). Also, 
the optimal temperature profile of Fig. 3 resembles partly the optimal temperature 
control of1 (cf.1 Fig. 8 - note that here adsorbed amount increases from left to 
right) . However, there is one significant difference: unlike in the case of one adsorber 
the adsorption process turns out to be very sensitive to the starting temperatures. 

LIST OF SYMBOLS 

concentration of the adsorbate in the particle 
a* equilibrium adsorbate concentration in the particle 
C = a*(rp, T)ja*(rpo. To) dimensionless equilibrium adsorbate concentration in the particle 
c = aja*(rpo' To) dimensionless adsorbate concentration in the particle 
D diffusion coefficient 
jj = Dt ' j R2 dimensionless parameter in Eq. (3) 
F adsorption isotherm 
M equilibrium adsorbed amount 
N number of adsorbent particles in the adsorber 

number of adsorbers in the cascade 
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j 
p 
p 

p 

q 
R 

T 
To 
T"dn, Tmox 

iteration step number 
partial pressure of adsorbate 
variable given by Eq. (18) 
adjoint variable 
dimensionless adsorbed amount 
radius of particle 
spherical coordinate 
temperature in the adsorber 
temperature of inlet flow 
temperature limits 

I time 

907 

I' = (4rr.NR 3a*«({Jo , To» /3 V({Jo) time in which the amount of adsorbate corresponding to the 
equilibrium amount in one adsorber at temperature To is introduced into the system 

V volume of the gaseous phase of the absorber 
volumetric flow rate at temperature To 

IfI adjoint variable 
.5 = V/( VI') dimensionless parameter in Eq. (1) 
(J = r/R dimensionless spherical coordinate 
r = I/ t ' dimensionless time 
r* 
({J 

({Jo 
¢J = Ip/({JO 
e = T/ To 

duration of one period 
gas phase concentration at temperature T 
gas phase concentration in the inlet flow at temperature To 
dimensionless gas phase concentration 
dimensionless temperature 
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